Graviness Blog

算数・数学・科学・電脳・雑記・アホの順の密度で記事が構成されます.
<< October 2017 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 >> ブログランキング・にほんブログ村へ
 
RECOMMEND
ビッグバン宇宙論 (上)
ビッグバン宇宙論 (上) (JUGEMレビュー »)
サイモン・シン, 青木 薫
RECENT COMMENT
  • 豊臣秀吉と曾呂利新左衛門から学ぶ数列の和
    優乃 (07/12)
  • 【誰か解いて】漸化式 a_(n+1) = f(n) * a_n ^ g(n) + h(n) の一般項
    優乃 (02/18)
  • 【誰か解いて】漸化式 a_(n+1) = f(n) * a_n ^ g(n) + h(n) の一般項
    S.S.+ (02/16)
  • 豊臣秀吉と曾呂利新左衛門から学ぶ数列の和
    坂井昭 (03/19)
  • d/dx(x↑↑n): 高さが定数のテトレーションの微分 - 数学的帰納法を用いる方法
    (09/30)
  • 全ての三角形は二等辺三角形
    優乃 (09/28)
  • 全ての三角形は二等辺三角形
    亀レス (09/28)
  • 全ての三角形は二等辺三角形
    優乃 (09/24)
  • 全ての三角形は二等辺三角形
    亀レス (09/23)
  • 【未解決】新しい演算子を創る
    $_ (09/10)
RECENT TRACKBACK
MOBILE
qrcode
PROFILE
無料ブログ作成サービス JUGEM
 
d/dx(x↑↑n): 高さが定数のテトレーションの微分

過去の記事「d/dx(x↑↑n): 高さが定数のテトレーションの微分 - 数学的帰納法を用いる方法」について、高さが定数のテトレーションの導関数を数学的帰納法を用いずに求めます。表記として、nx := x↑↑n を用います。

 

---

続きを読む >>
【誰か解いて】漸化式 a_(n+1) = f(n) * a_n ^ g(n) + h(n) の一般項

過去の二つの記事の漸化式を包含する a_(n+1) = f(n) * a_n ^ g(n) + h(n) の形式の一般項を求めたいです。

* 漸化式 a_(n+1) = f(n) * a_n + g(n) の一般項

* 漸化式 a_(n+1) = f(n) * a_n ^ g(n) の一般項

 

通勤時などで数ヶ月考えてますが、これがどうやっても解けない。。。恐らく初等関数の範囲では解けないのではないかと思います。

 

関連して、隣接三項間漸化式 a_(n+2) = f(n) * a_(n+1) + g(n) * a_n は、両辺を a_(n+1) で割ると、a_(n+2)/a_(n+1) = f(n) + g(n) * a_n/a_(n+1) となり、b_n = a_(n+1)/a_n とおけば、b_(n+1) = g(n) b_n ^ (-1) + f(n) となるため、本記事の漸化式が解ければ隣接三項間漸化式も解くことができます。

 

JUGEMテーマ:学問・学校

 

漸化式 a_(n+1) = f(n) * a_n ^ g(n) の一般項

あけましておめでとうございます。京都⇔宮崎の実家の移動中の数学の成果wを記事にします。

 

結論から記載すると、漸化式

a_(n+1) = f(n) * a_n ^ g(n)

の一般項が

a_n = {a_1^Π[i=1,n]g(i) * Π[j=1,n-1]{f(j)^Π[i=j+1,n]g(i)}}^{1/g(n)}

となることを示します。

 

---

続きを読む >>
階差数列から元の数列の一般項を求める問題では、n=1の場合分けが必要になることについて

高校数学で出題される次のような問題。

 

初項a1 = 1から始まる次の数列の一般項anを求めよ。
1, 2, 4, 7, 11, 16, 22, 29, 37

 

これを解く過程で場合分けが登場する。

 

各項の差をとると1, 2, 3, 4, 5, 6, 7, 8となり、階差数列の一般項はnと書ける。

 

ゆえに、n ≧ 2の場合

an = a1 + Σ[i=1,n-1]n

これを解いて

an = n(n-1)/2 + 1

ここで右辺にn = 1を代入すると

右辺 = 1 = a1 = 左辺

となり、n = 1のときも成り立つ。

 

最後のn = 1を確認するところで、成り立たない問題を見たことがない。だから、場合分けは必要なの?って話。以下で真面目に考えてみる。

続きを読む >>
漸化式 a_(n+1) = f(n) * a_n + g(n) の一般項

漸化式の一般項を求める。ツマラナイ答えを除外するため、を条件とする。

 

続きを読む >>

(C) 2017 ブログ JUGEM Some Rights Reserved.